
RTI Common Software
Framework

AMG-15

9 October 1996
TASC, Inc.

Michael Hooks, Rich Rybacki, Charles Koplik, Tony Lashley

Acknowledgments to: Stephen Bachinsky (SAIC) and

Chris Deschenes (I-Kinetics)

BACKGROUND

DMSO/STRICOM

Platform Proto Federation Experiment

Platform Proto Federation

JTCTS (Newport, RI)

BFTT (Dam Neck, VA)

BDS-D, CCTT
(Orlando, FL)BFTT

(Austin, TX)

HLA Evaluation
Experiment

Sites

• BDS-D: M1 manned simulator

• BFTT: embedded simulators for carrier,
destroyer, gunboat, and weapons

• CCTT: computer generated ground forces

• JTCTS: engineering models for live aircraft and weapons

Objectives of Common
Software Experiment

• Evaluate prototypical middleware for RTI

• Provide Federates with a set of service
classes developed around a software
framework

• Deliver to STRICOM the Federation
Common Software

• Deliver User’s Guide for the software

RTI Integration

BDS-D

PPF Common Software

HLA Run-time Infrastructure

CCTT SAFBFTT JTCTS

Ada to C++
HLA Gateway

SIMNET
to HLA
Gateway

HP to Sun
Client/Server
HLA Interface

HLA/DIS interface
architecture
(shared memory,
entity processor,
network manager)

Object-
Oriented
Service

Framework

Benefits of Middleware to
HLA Community

• Manage Complexity
– RTI/HLA implementation issues solved in a central location

• Minimize Integration Time
– Interface can be tailored to specific needs of the platform simulation

– Results in lower development costs

• Maximize Extensibility
– Service Repository: allows users to Plug and Play alternative

implementations

– Object-Oriented Methodology allows reusability of services by
inheritance -- powerful new services can be created leveraging off of
already existing services

APPROACH

Modular Software Framework

RTI Common Services

Modular Software Framework
Top Level Object Class Hierarchy

Component

Application
Component

GUI
Component

Framework
Component

Framework
Managers

GUI
Managers

Represents a generic simulation object that can be
created, initialized, executed, and managed.

Application-specific
and configurable
class hierarchies

Collection of component managers that
provide services for a dynamic and recon-
figurable simulation environment (access,
configure, execute, control, modify, save)

Collection of managers
that provide services to
support application-specific
graphical user interfaces

Modular Software Framework
Component Class

Component

Type ID Host Name

Attributes Server Requests

Type: classification mechanism
used to define the interface
capability of the component and the
implementation name

ID: identification mechanism for
uniquely distinguishing a
particular component

Host: location where component
exists (computer, cluster)

Attributes: definition and
manipulation of model initialization
parameters

Composition Manager: specifies
notional hierarchy relationship

Analysis Elements: definition
and selection of accessible data

Server Requests: definition and
access to servers required by
component

get type
set type

get ID
set ID

get name
set name

Analysis Elmts.

get server requests
set server requests
bind server

Composition

attach Child
detach Child
set Parent
get Containment
 Hierarchy

element exists
get # of elements
get element
get link to component
compute when to push
push data to component

get attribute
set attribute
check validity

Component Service
Framework

Interface to Legacy Systems

Component

Common Software
Component

Exercise Mgmt. Service
Process Mgmt Service
Time Mgmt Service
Object Mgmt Service
FOM Mgmt Service
Interest Mgmt Service
Ownership Mgmt Serv.

Service
Dispatch

Component
Service

PPF Component
Service

Federation Execution
RTI Executive
RTI ambassador
Simulation Ambassador

Service
ID

Service Type

Service Status

Component ID

Component
Type

Component Service
Class Diagram

FEDERATE
IMPLEMENTATION

BFTT Common Software
Implementation

B
F
T
T

HLA
CLIENT

DIS HLA
SERVER

C
S

CS: Common Software

R
T
I

C
O
R
B
A

C
O
R
B
A

R
T
I

BDS-D

R
T
I

CCTT

R
T
I

JTCTS

HP Processor

Sun Processor

JTCTS Engineering Model
Common Software Implementation

JTCTS
Engineering

Model

GEOSIT

R
T
I

HLA Gateway Process

RTI

API

C
O
M
M
O
N

S
O
F
T
W
A
R
E

CS
I/F

(Ada
to

C++)

Initialization
and

Termination
Processing

R
A
D
E
X

I/F

Periodic
Processing

Scenario
Data

BDS-D Common Software
Implementation

Local RTI

Common Software

Gateway/RTI I/F

Gateway

SIMNET Protocol Stack

•Translation logic
• Dead reckoning
• Data distribution

HLA Network

M1
Simulator

SIMNET Network

Plan View
Display

Stealth

IST
HLA

Gateway

Services Provided

PPF Service Classes

• FOM Management
– database of FOM class, object, attribute, & interactions relationships

• Federation Management
– federation execution support (create, join, resign)

• Object Management
– object, attribute, & interaction publication and transmission support

• Interest Management
– object, attribute, & interaction subscription and reflection support

• Ownership Management
– object and attribute ownership transferal support

– federate synchronization support

• Time Management
– federate synchronization support

FOM Management Service
Summary

• Maintains a database of active classes, attributes, and
interactions within the particular federate

• Class definitions contain relationships to the attributes
used to describe a FOM class. The FOM classes, attributes,
and interactions use a dual identification mechanism
consisting of a character string and a unique integer

• A database of active objects contains the RTI based ID for
each object and provides the connection to the FOM class
definition associated with the object

Federation Management
Service

• Key Class Methods

– createFederation

– joinFederation

– Obtain or set configuration information regarding host names, RTI
server name, RID filename

• Configuration Behavior

– Federation Execution easily customized through method interface,
default arguments, or environment variables.

• RTI Abstraction

– Simple abstraction to RTI federation management services.

– Hides CORBA server binding operations.

– Supports proper handling of RTI exceptions.

Object Management Service
Summary

• Objects referenced by FOM class name and attributes

• Interactions are asynchronous events that can be sent along
with a set of parameters at any time during the simulation.

• A database of published objects is maintained by the
service class in order to simplify client operations
– The Object Management Service is able to maintain the latest

values of the attributes, only sending values to the RTI that have
changed

– The database also maintains the RTI update requirements for each
object

Interest Management Service
Summary

• Subscription process instructs the RTI to only reflect
attribute values or send interactions that match the interest
declarations

• Reflected attribute values and interactions sent from other
federates are buffered. The buffering mechanism
maintains a collection of objects, and their corresponding
attribute values, matching the interest criteria.

• Interactions sent to the federate are captured in a list.
Clients of the Interest Management Service can access the
object attribute and interaction parameter data using
various query mechanisms.

Lessons Learned

Federate Experience

• Common Software simplified development by providing needed
common services (e.g., object database, asynchronous interaction) and
insulating users from intricacies of RTI API and CORBA

– However, parallel Federate, CS, and RTI development added
delays and additional debugging complexity

– Also, CS masking of RTI has drawbacks (one step away)

• BFTT was able to use Common Software as server running on Sun
with client (and BFTT) on HP (saved porting). However, this does
introduce latency

• BFTT implemented CS as a multi-threaded server with an HLA server
for event processing and routing data. Solved problem of backlog in
RTI event queue.

Federate Experience
(continued)

• Polling as a means for Federate/CS interactions will not scale to large
numbers of entities. Federate needs method for direct notification
(BFTT)

• More efficient to provide common service to allow request of a block
of entity ID’s for future assignment (BFTT)

• Common Software attempt at generalization created inefficiencies
(e.g., using strings to identify attributes instead of RTI handles to
simplify implementation) (IST)

• Instrumentation of the PPF was easily achieved through changes to the
Common Software (IST)

